Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

نویسندگان

  • S. Lan
  • Y. Ren
  • X. Y. Wei
  • B. Wang
  • E. P. Gilbert
  • T. Shibayama
  • S. Watanabe
  • M. Ohnuma
  • X. -L. Wang
چکیده

An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large supercooled liquid region and phase separation in the Zr–Ti–Ni–Cu–Be bulk metallic glasses

Results of calorimetric, differential thermal analysis, and structural measurements are presented for a series of bulk metallic glass forming compositions in the Zr–Ti–Cu–Ni–Be alloy system. The calorimetric data for five alloys, prepared along the tie line between phase separating and nonphase separating compositions, show that the transition from phase separating to nonphase separating behavi...

متن کامل

Atom Probe Studies of Supercooled Liquids

Phase transformations in the supercooled liquid region (between T, and T,,,), prior to the onset of crystallization, in amorphous Pd-Ni-P alloys remain controversial. It has been previously proposed that the amorphous alloy decomposes into two amorphous phases prior to the crystallization reaction when annealed in the supercooled liquid region. Investigations by DSC, Mossbauer spectroscopy, X-r...

متن کامل

Effect of Ni on Amorphization of Ti-Cu-Ni Ternary alloys Prepared by Mechanical alloying

Amorphous alloys has been taken into consideration because of their unique properties and are nominated as the future engineering materials. In this research, the effect of Ni and milling time on amorphization process and thermal stability of Ti50Cu50-xNix(x=10, 15, 25 at%) alloy system were investigated. The evolution of amorphization during milling, thermal stability and subsequent heat treat...

متن کامل

Phase Separation and Crystallization in Cu-Zr Metallic Glasses

The structural behavior of rapidly quenched Cu-Zr amorphous alloys was analyzed. High energy X-ray diffraction patterns and atomic pair correlation functions exhibit monotonic changes with composition. The experimental results can be well described by a solid solution-like replacement of Cu and Zr atoms in the whole composition range. No indications are observed that would support the existence...

متن کامل

On the Fragility of Bulk Metallic Glass Forming Liquids

In contrast to pure metals and most non-glass forming alloys, metallic glass-formers are moderately strong liquids in terms of fragility. The notion of fragility of an undercooling liquid reflects the sensitivity of the viscosity of the liquid to temperature changes and describes the degree of departure of the liquid kinetics from the Arrhenius equation. In general, the fragility of metallic gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017